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Abstract 

Sizeselective concentration of partides in 3D turbulence may be related to collec- 

tion of chondrules and other constituents into primitive bodies in a weakly turbulent 

protoplanetary nebula. In the terrestrial planet region, both the characteristic size 

and narrow size distribution of chondrules are explained, whereas "fluffier" particles 

would be concentrated in lower density, or more intensely turbulent, regions of the 

nebula. The spatial distribution of concentrated particle density obeys multifractd 

scaling, suggesting a dose tie to the turbulent cascade process. This scaling behavior 

allows predictions of the concentration probabilities to be made in the protoplanetary 

nebula, which are so large (> lo3 - lo4) that further studies must be made of the role 

of mass loading. 

Background and Introduction: Most chondritic meteorites are composed in large part of 

mm-sized, once-melted silicate particles (chondrules) and metallic grains which are narrowly 

sorted, most likely by aerodynamic cross section (1); various hypotheses have been advanced 

to explain these properties (2,3). In prior work (3), we noted that chondrule-sized particles 

are unable to settle to the nebula midplane unless turbulence is vanishingly small. Instead, 

we proposed that, following an undefined fornation process in the nebula (4), chondrules 

pursue an extended free-floating existence until plausible conditions of nebula gas density 
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anfl turbulent intensity in the terrestrial planet region concentrate them into much more 

massive, but still not solid, .'clouds" which might have enough coherence to resist disruption 

by eddies and settle to the midplane for subsequent accumulation into planetesimals. We 

think of this process as "primary accretion". The early stages are easily generalized to a 

wide range of fluffier particles in lower density nebula regions. The final stage (settling of 

dense clouds) remains unstudied, and will require better understanding of the behavior of 

particle ensembles whose density is large enough to affect the gas flow properties. 

We have defined the concentration factor C as the ratio of the local particle density 

to its global average; in numerical studies to date (3, 5 ,  6), Reynolds numbers of lo2 - 

lo3 produce C z 40 - 300. While C is seen to increase systematically with increasing 

Reynolds number, estimates of concentrations at  nebula Reynolds numbers had required 

sizeable extrapolations (3) .  Here, we utilize our recent discovery of the Reynolds-number- 

independent fractal properties of the particle density field (6) to provide a firmer basis €or 

predictions under nebula conditions. 

Turbulence and turbulent concentration (TC) in the nebula: Homogeneous, isotropic, 

3D turbulence is characterized by a cascade of energy through a range of scales, known as 

the inertial range, from the largest (or integral) spatial scale L (with associated velocity 

VL) to the smallest (or Kolmogorov) scale 9 = LRe-3/J where it is dissipated (7). The 

intensity of turbulence is often characterized by the Reynolds number Re 3 Lv~/v,,,, where 

v,,, is the molecular viscosity; Re is the ratio of transport by macroscopic motions to that 

by molecular motions. This definition expresses the velocity and length scales in terms 

of viscosity; however, TC is based more on turbulent kinetic energy IC than on turbulent 

viscosity (8). Therefore, we carefully distinguish between these quantities. We redefine 
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Re = a , c H / v m .  where  c and H are the sound speed and vertical scale height of the  nebula. 

ancl a, is the familiar Shakura-Sunyaev parameter. Similarly, we define ctk by k = bz/2 E 

lakC2. 2 With the stipulation that true turbulent eddies cannot have frequencies smaller than 

the local orbital frequency, we find L a H&, and Vr, x c f i .  

There is current concern about how, or whether, turbulent kinetic energy is maintained 

in neutral nebula gas in the terrestrial planet region (9), which is related to the subtle 

distinction between a, and ak. If a, << ak, for instance, the energy source for k would 

need to be something other than simple viscous evolution of a Keplerian disk. There are 

several energy sources (9) for which typical estimates of ak are - and thus 

Re = 108 - 10" (10). Thus, in spite of pressing concerns, the issue of turbulence appears to 

remain open. Henceforth we neglect the distinction between ak and a, and treat Re and its 

associated a as providing L and VL, whether or not their product constitutes a net positive 

- 

Reynolds stress. 

We presume a Kolmogorov-type inertial range7 within which each length scale Z is charac- 

terized by velocity v(Z) = VL(Z/L)~/~ and eddy frequency w(Z) = v(Z)/Z = R(Z/L)-*i3, where 

in the nebula fl = w(L)  .= VL/L is the local orbital frequency under solar gravity (3,7). 

Because the most interesting scales for particle concentrations are on the order of 7 << L, 

deviations from isotropy due to rotation are not a major concern. For particles smaller than 

the gas mean free path (ie, smaller than several cm radius under nebula conditions), the 

stopping time due to gas drag is t ,  = rp,/cpg, where T and ps are particle radius and internal 

density and po is the gas density. The particle Stokes number Str E t,w(Z) determines the 

particle response to eddies of a particular scale and frequency; 

th,at the optimally concentrated particles have St, = t,w(q) x 
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tiriie is  comparable to the Kolmogorov eddy turnover time. 

Our original work ( 3 )  concluded that the optimally concentrated particles in the ter- 

restrial planet region of the nebula have radius and density comparable to those of chon- 

drules; furthermore, TC is easily generalized to a wide range of nebula conditions. The 

expression from ( 3 )  for optimally concentrated particle size may be rewritten as r p ,  = 

( n H 2 / 4 4 H 2 ) 0 ’ 5 ( C / a ) 0 ‘ ~  M 1.4 x 10-3Rie75a-0.5 g cm-*, where 5 is surface mass density, 

mH2 and OH, are the mass and cross-section of Hz, and properties of the central scale height 

in a Hayashi-type “minimum massn nebula are assumed (11). This relationship is shown in 

figure 1 for several different typical locations. Note that porous aggregates (PA), having 

considerably lower radius-density product than chondrules, are optimally concentrated at  

the low gas densities which characterize the outer planet region or low density regions high 

above the nebula midplane. Such porous objects are easily produced because the low relative 

velocities in turbulence of low-density grains and their constituent monomers lead to large 

sticking efficiency and minimal disruption (13). TC may thus have been ubiquitous, initi- 

ating the formation of “cometesimals” from porous grain aggregates at  10-30 AU. However, 

textural evidence might be difficult to obtain from this regime; subsequent compaction would 

obliterate evidence for any preferred size or density of easily squashed fluffy constituents. 

Chondrules and their parent meteorites, by nature of their availability and unique, persistent 

textures, provide the most obvious initial testing ground for turbulent concentration. 

Con cent rated particle size d id  ribu t ion: 

We have recently determined the properties of turbulent concentration from direct numer- 

ical simulations of homogeneous, isotropic, incompressible 3D turbulence at  three Reynolds 

numbers Re = 110, 426, and 1300 (6,14). The particles can be given arbitrary aerodynamic 
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Figure 1: The optimal Stokes number for turbulent concentration, converted to the product 

of particle radius and density by adopting nominal nebula gas density and local rotation 

rate at various locations in a typical solar nebula, as functions of 0. Solid silicate particles 

with chondrule sizes (CH) are favored in the terrestrial planet region for nominal a (3). 

Smaller gas densities at larger distances from the sun concentrate smaller r p p  products 

(porous aggregates, or PA) for any a. It has also been suggested that extremely low density, 

intensely turbulent regions may concentrate tiny grains or very fluffy aggregates (FA) (12). 
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stopping times t,,: their  motions respond only to gas drag and are integratecl in the spa- 

tial domain. The computationally intensive calculations are run on 16 CY0 cpus at Ames 

Research Center. 

One important finding relates to the detailed form of the size distribution of selectively 

concentrated particles. If dense clouds of particles are precursors of primitive bodies. the 

distribution with Stokes number of particles in dense regions should correspond to the dis- 

tributions found in chondrites. Simulations were initiated with uniform spatial distributions 

of particles, themselves uniformly distributed in stopping time over the range St, = 0.1 - 6 

(14), and the relative equilibrium abundance of particles was studied as a function of St, 

and C. In the large-C limit of interest, the shape of the distribution of relative abundance us 

St, was found to be independent of both C and Re (14). Thus, the numerical results should 

be valid as a prediction of the size distribution in clouds under nebula conditions. 

In figure 2 we compare a histogram of relative particle numbers as a function of St 

from our numerical simulations, with binned data for 253 disaggregated chondrules from 

the L4 ordinary chondrite (OC) ALH85033. While a few ostensibly similar data sets exist 

in the literature (15), data for this and several other meteorites imply that merely measur- 

ing the chondrule radius distribution and assuming some mean density misrepresents the 

rps distribution because of chondrule-techondrule density variations (16). The meteorite 

histogram was aligned horizontally with the predicted histogram by assuming that the opti- 

mally concentrated particle size lies at  St, = 1. The shape of the theoretical profile contains 

no adjustable parameters, and the data and model profiles are in excellent agreement. The 

implication is that TC by itself can explain the very narrow chondrule size distribution, what- 

ever the chondrule formation process may have produced. Larger or smaller uchondrules” 
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Figure 2: Comparison of the size-density distribution of 253 chondrules disaggregated from 

L4 ALH 85033 (solid symbols) with the theoretically determined shape distribution (open 

symbols) for the relative abundance of particles concentrated in turbulence (14,16). The 

theoretical profile is independent of C and Re, close to lognormal in shape, and a good 

match to the shape of the data. Four different meteorites now exhibit agreement this good 

(Cuzzi et al 1999) 
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rriight have  existed, but would simply not be concentrated to such a significant extent for 

clelivery to the midplane unless swept up into chonclrule rims or broken to the proper size. 

Of course, some particles of arbitrary size will always appear just by accident, and parent 

body processes will confuse the situation further. 

Particle concentration is a multijractal with Re-independent properties: .I\ nonspecialist's 

definition of a fractal is a structure which is generated by sequential application of a rule on 

regularly decreasing spatial scales. Simple fractals with constant (but non-integer) dimension 

result from rules which produce a binary distribution of the local density (say, either 0 or 1) - 

and are invariant to changes in scale. Examples of these are the Cantor set or the Sierpinski 

gasket, in which segments of a line, or portions of a plane (17), are simply removed without 

changing the surrounding values. Their average density, as a function of scale e ,  may be 

written as p ( e )  = p o ~ : - D  with dimension D = 0.63 and D = 1.52 respectively. 

For comparison, multzfractals result from application of rules in which the local measure 

is changed while conserving the total measure - for example, by unequal (but invariant) 

repartitioning of the content of a bin into sub-bins at each of the many subsequent stages 

of a cascade process (17). Such quantities have no well defined local value in the limit 

of diminishing bin size; that is, their local values are spatially spiky or "singular" (17). 

Considerable study has been devoted to multifractals in turbulence, because turbulence 

(and specifically its inertial range) is the archetype of a cascade process (7,17). For instance, 

dissipation of turbulent kinetic energy, which occurs on the Kolmogorov scale, is not spatially 

uniform but has the spatial distribution of a mutifractal (18). The spatial distributions of 

multifractals are predictable in a statistical sense, using probability distribution functions 

(PDFs) which are derived directly from their dimensions. 
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In miiltifractals, the dimension wries with t h e  value of the me~(.sure: in otir case, the 

measure is particle concentration C which is defined in terms of ea, where a is a scaling 

index which can be regarded as a local dimension €or C. The key statistical descriptor of 

a multifractal is its singuluri'ty spectrum f(a), where f(a) plays the role of a dimension of 

the probability distribution function for C (19,18,6) and is the key element in the PDF's 

(discussed further below). 

To make predictions at values of Re very different from directly accessible values, thus, 

the Re-dependence of f(a) is crucial. Using the methodology of (18), we have shown that 

the spatial distribution of optimally concentrated (St, = 1) particles is a multifractal, with 

f(u) invariant over more than an order of magnitude in Re (Re=100 - 1300) (6). This 

Re-invariance for j(a) is only seen if binning is tied to some fundamental flow-relative scale 

such as the Kolmogorov scale 7 ,  which varies with Re in a known way. Dissipation has also 

been shown to have an Re-independent f(a) - from numerical work at Re - 100, including 

our own, through laboratory experiments with Re - lo', to experimental studies of the 

atmospheric boundary layer with Re - lo6 (20,18). Particle concentration and dissipation 

are physically connected through their preference for the Kolmogorov scale, and the shapes 

of the singularity spectra for dissipation, and for particle concentration binned at close to 

the Kolmogorov scale, are similar ( 6 ) .  These facts suggest that the physics which leads to 

turbulent concentration is closely related to the turbulent cascade process - as for dissipation. 

The turbulent cascade is known to have statistically predictable, Re-independent properties 

in the inertial range. Based on these arguments, we believe and presume that the particle 

concentration singularity spectrum f( a )  remains Re-independent to far larger values than 

those of our numerical experiments. Given this invariance, we can predict nebula conditions 
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rnore confidently t h a n  from extrapolation alone, as was done in (3 ) .  

The scaling index a is related to C as follows: the fractional probability f, of a particle 

lying in a bin which contains iVi particles out of lVp total particles is defined as PI = N i / N p  G 

PI, where e bin size/domain size. The associated concentration factor C; E , v p / u ,  where u; 

is the volume of a bin and L: is the total volume of the domain; thus C; = L’I/u = (ea1/e3)  = 

As mentioned above, Re-invariance of f(u) is only expected when the bin size is some 

multiple J of 7. The domain normalized bin size is then e = JT/iVlL = $Re-3/4 = - 1/R, 

where M L  is the domain size (18) expressed in units of the integral scale L ,  and we use the 

inertial range relationship 77 = LRe-3/4. Thus, C = R3-” , or u = 3 - =. For a nebula 

characterized by some turbulent a, with bin size 277, integral scale L = H G ,  and a domain 

size of 2H (21), one obtains 

N,/o, 

Y, /IV 

InC 

R = a1/4(cH/vm)3/4. (1) 

The normalized PDF for a is usually written as F ( a )  = p ( a ) ~ ~ - f ( ~ ) ,  where the prefactor 

p ( u )  can be approximated as (18): We define the PDF F,(C) as the volume fraction 

occupied by bins having concentration factor C, with Jgzy F,(C)dC = s,”,-,i= F(a)da E 1. 

Transforming variables and their PDFs, we get 

Note how the function f(u) assumes the role of a dimension for F,(C). The fraction 

of purticles occupying bins with C is Fp(C) = CF(C) ,  and both F,(C) and Fp(C) have 

cumulative versions F,(> C) = JF F,(C)dC, and Fp( > C) = JF F,(C)dC. We have ob- 

tained numerical results which validate the (ergodic) assumption that the fraction Fp(> C) 
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(spatially averaged over all particles at several snapshots in time) is equal to the fraction of 

t ime Ft (>  C) spent by a given particle in regions denser than C (temporally averaged over 

extended trajectories for a few particles). 

If I(.) is indeed a Re-independent, universal function for optimally concentrated ( S t ,  = 

1) particles, we can then predict PDF's for any given nebula a(= a k )  using equations (1) 

and (2) derived above. As a check on the method (there are subtle normalization issues). an 

average f(a), obtained from our numerical calculations at all three Re values (22 ) ,  was used 

to calculate Fp(> C) (= Ft(> C)) for comparison with the distributions directly determined 

from numerical results at our three Re values (6). As shown in figure 3, the single f(a) does 

quite well at predicting the PDFs at all three Re. Also shown in figure 3 are associated 

predictions of Fp( > C) for four values of nebula a, using equations (I)  and (2). Based on 

these predictions, St = 1 particles spend 10 percent of their time in regions with C > lo3, 

and 1 percent of their time in regions with C > lo", under nebula conditions. These results 

might help us understand why some chondrule types seem to have been formed under highly 

oxidizing conditions (1). 

Encounters with dense clouds, and entrapment: The PDF's can then be combined with 

the particle velocity through space Vp to calculate the %encounter time" Ten, of a chondrule 

with a region of arbitrary C, using a duty cycle argument: Ft(> C) M t.,(>c) t o u r  M t,,(>c) Tenc ' 

where t;,(> C) << T,, is the time spent traversing a bin with concentration greater than 

C. Thus, for bins of dimension 2q and particle velocity Vp, ti,(> C) = 217/Vp, so T,, 
t .  >c t,," Fr(>C) - - dl Fp(>C) = 5 1  VpFp(>C)'  and the encounter rate is & = z F p ( >  C). We have verified 

numerically that, as expected for particles with stopping times t, much shorter than the 

overturn time of the largest eddies R-* (23,11), Vp is nearly identical to the typical gas 
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Figure 3: Probability Distribution Functions (PDF's) for the fraction of particles lying in 

regions with concentration factor greater than C (F'( > C)), or, equivalently, the fraction 

of time spent by any particle in such regions (Ft(> C)) as discussed in the text. The three 

sets of points are binned directly from our numerical simulations; the associated curves are 

calculated from a single averaged f(a) obtained from all three values of Re. The curves 

without points use the  same f(a) to predict PDF's at the larger Re corresponding to four 

plausible nebula a values: (short dashed line), (solid line), 10-3 (long dashed line), 

and lo-' (dotted line). 
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velocity C;. where Cr; zz VL 6 z c,/6 (23). 

Specifically, we may calculate the encounter rate (and time) with a cloud so dense that 

a particle becomes entrapped with its neighbors and removed from further free circulation. 

Normally. particles traverse dense regions without incident, as their gas drag stopping time 

is longer than their transit time (3). An entrapment threshold occurs when interparticle 

collisions prevent particles from passing through a cloud; this implies a critical cloud optical 

depth T,II of unity, defining a critical C,l,. For small, dense 27-sized clumps, rcoll = 1 = 

27Ccori( pch/m)xr2, where pch is the average (unconcentrated) chondrule mass density, and 

m and r are chondrule mass and radius. Then Ccoll x 300rp , /qpgfch x 3 x 105/fch, where 

fch is the fraction of all solid mass in chondrule form, ps - 3 is the density of a chondrule, 

and nominal parameters at 2.2 AU are assumed (11). Such clouds are orders of magnitude 

denser than the gas (pd/pg - 1500 for fch = 0.3 and Ccoll - lo6). For these parameters, 

and the PDF's we have in hand, T,, is on the order of 10' years - short compared to nebula 

evolution timescales. This quantifies the first part of our earlier suggestion (3) that such 

an encounter at Tenc(C,Il) ends the freely wandering life of a chondrule. A second stage, 

in which the chondrule and its cluster of neighbors might settle toward the midplane under 

the vertical component of solar gravity as a dense, but still far from solid, unit (3), remains 

more speculative and is under study. Alternately, TC might merely provide a large increase 

in the collisional aggregation rate of optimally sized particles. 

Discussion: 

Limitations due to mass loading: Even with this approach being clear in principle, there 

is one important unknown factor remaining. The cascade process model is only valid as 

long as no "new" physics emerges at some step in the cascade to change the "rule", or 
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f(a), applicable to subsequent steps in the cascade. However, the above predictions imply 

that particle collisions trap particles in small, dense cloucls only when p p / p s  2 I O 3 .  While 

these high concentrations literally relate to regions comparable to 77 in size, where there 

is no turbulence to damp, the cascade that produced such a cloud from its "penumbra", 

must have extended to larger sizes within which turbulent motions may be damped by 

lower concentrations. We have made some preliminary calculations of f( a )  for mass loading 

pp/pg - 1. Turbulent concentration persists, but its f(a) is altered in the sense that high C 

values have a lower probability. Clearly, this effect must be quantified before more specific 

predictions of Ten, and other accumulation timescales can be made. 

Complications due to  cloud evolution and parent body processing: The subsequent evolu- 

tion of dense clouds in the vertical component of solar gravity must still be studied. Do they 

retain their identity or disperse? In subsequent stages, solids must be compacted to orders 

of magnitude higher density than the dense clouds produced by turbulent concentration - 

possibly due initially to collisions between dense clouds en route to, or within the midplane, 

followed by midplane sweepup of the dense clouds or their constituents by objects which can 

begin as small as ten meters ( i e  (l l) ,  section 5.4; also (13)). The fact that most primitive 

meteorites contain ample evidence for abrasion, fragmentation, and other mechanical pro- 

cesses which may well have continued long after the nebula gas vanished and aerodynamic 

processes became irrelevant, warns us that we should not expect turbulent concentration to 

explain all properties of even "primitive" meteorites. 
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